Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 11(12)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36551368

RESUMO

Antimicrobial peptides (AMPs) are a diverse class of short, often cationic biological molecules that present promising opportunities in the development of new therapeutics to combat antimicrobial resistance. Newly developed in silico methods offer the ability to rapidly discover numerous novel AMPs with a variety of physiochemical properties. Herein, using the rAMPage AMP discovery pipeline, we bioinformatically identified 51 AMP candidates from amphibia and insect RNA-seq data and present their in-depth characterization. The studied AMPs demonstrate activity against a panel of bacterial pathogens and have undetected or low toxicity to red blood cells and human cultured cells. Amino acid sequence analysis revealed that 30 of these bioactive peptides belong to either the Brevinin-1, Brevinin-2, Nigrocin-2, or Apidaecin AMP families. Prediction of three-dimensional structures using ColabFold indicated an association between peptides predicted to adopt a helical structure and broad-spectrum antibacterial activity against the Gram-negative and Gram-positive species tested in our panel. These findings highlight the utility of associating the diverse sequences of novel AMPs with their estimated peptide structures in categorizing AMPs and predicting their antimicrobial activity.

2.
Antibiotics (Basel) ; 11(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35884206

RESUMO

Antibiotic resistance is a global health crisis increasing in prevalence every day. To combat this crisis, alternative antimicrobial therapeutics are urgently needed. Antimicrobial peptides (AMPs), a family of short defense proteins, are produced naturally by all organisms and hold great potential as effective alternatives to small molecule antibiotics. Here, we present rAMPage, a scalable bioinformatics discovery platform for identifying AMP sequences from RNA sequencing (RNA-seq) datasets. In our study, we demonstrate the utility and scalability of rAMPage, running it on 84 publicly available RNA-seq datasets from 75 amphibian and insect species-species known to have rich AMP repertoires. Across these datasets, we identified 1137 putative AMPs, 1024 of which were deemed novel by a homology search in cataloged AMPs in public databases. We selected 21 peptide sequences from this set for antimicrobial susceptibility testing against Escherichia coli and Staphylococcus aureus and observed that seven of them have high antimicrobial activity. Our study illustrates how in silico methods such as rAMPage can enable the fast and efficient discovery of novel antimicrobial peptides as an effective first step in the strenuous process of antimicrobial drug development.

3.
Angew Chem Int Ed Engl ; 61(4): e202113235, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34889016

RESUMO

We report on the synthesis of bivalent water-soluble calix[4]arene and calix[5]arene hosts, Super-sCx4 and Super-sCx5 as new broad-spectrum supramolecular binders of neuromuscular blocking agents (NMBAs). Synthesis was achieved using the target bisquaternary amine NMBAs as a template to link two highly anionic p-sulfonatocalixarene building blocks in aqueous solution. Bivalent anionic hosts Super-sCx4 and Super-sCx5 bind by engaging both quaternary amines present on a variety of NMBAs. We report low µM binding to structurally diverse alkyl, steroidal, curarine and benzylisoquinoline NMBAs with high selectivity over the neurotransmitter acetylcholine and a variety of other hydrophobic amines.


Assuntos
Calixarenos/síntese química , Bloqueadores Neuromusculares/síntese química , Aminas/química , Calixarenos/química , Estrutura Molecular , Bloqueadores Neuromusculares/química
4.
J Tissue Eng Regen Med ; 15(6): 556-566, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33779072

RESUMO

Cell replacement therapy is emerging as an important approach in novel treatments for neurodegenerative diseases. Many problems remain, in particular improvements are needed in the survival of transplanted cells and increasing functional integration into host tissue. These problems arise because of immune rejection, suboptimal precursor cell type, trauma during cell transplantation, and toxic compounds released by dying tissues and nutritional deficiencies. We recently developed an ex vivo system to facilitate identification of factors contributing to the death of transplanted neuronal (photoreceptor) and showed 2.8-fold improvement in transplant cell survival after pretreatment with a novel glycopeptide (PKX-001). In this study, we extended these studies to look at cell survival, maturation, and functional integration in an in vivo rat model of rhodopsin-mutant retinitis pigmentosa causing blindness. We found that only when human photoreceptor precursor cells were preincubated with PKX-001 prior to transplantation, did the cells integrate and mature into cone photoreceptors expressing S-opsin or L/M opsin. In addition, ribbon synapses were observed in the transplanted cells suggesting they were making synaptic connections with the host tissue. Furthermore, optokinetic tracking and electroretinography responses in vivo were significantly improved compared to cell transplants without PKX-001 pre-treatment. These data demonstrate that PKX-001 promotes significant long-term stem cell survival in vivo, providing a platform for further investigation towards the clinical application to repair damaged or diseased retina.


Assuntos
Glicopeptídeos/farmacologia , Células Fotorreceptoras de Vertebrados/citologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Eletrorretinografia , Feminino , Humanos , Masculino , Células Fotorreceptoras de Vertebrados/transplante , Ratos
5.
Regen Med ; 13(5): 581-593, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30113240

RESUMO

The olfactory mucosa contains cells that enable it to generate new neurons and other supporting cells throughout life, allowing it to replace cells of the mucosa that have been damaged by exposure to various insults. In this article, we discuss the different types of stem cell found within the olfactory mucosa and their properties. In particular, the mesenchymal-like cells found within the lamina propria will be reviewed in detail. In addition, we discuss potential applications of olfactory-derived stem cells toward hearing regeneration secondary to either inner hair cell loss or primary or secondary auditory nerve degeneration.


Assuntos
Perda Auditiva/terapia , Mucosa Olfatória , Regeneração , Medicina Regenerativa/métodos , Transplante de Células-Tronco , Células-Tronco , Animais , Células Ciliadas Auditivas Internas , Humanos
6.
J Tissue Eng Regen Med ; 11(9): 2658-2662, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27229654

RESUMO

Cell therapy, to replace lost tissue, is a promising approach for the treatment of various neurodegenerative diseases. Many studies suggest, however, that the percentage of transplanted cells that survive and undergo functional integration remains low as a result of immune rejection, suboptimal precursor cell type, trauma during cell transplantation, toxic compounds released by dying tissues or nutritional deficiencies. We recently developed an ex vivo system to facilitate identification of factors contributing to the death of transplanted neuronal (photoreceptor) cells and compounds that block these toxic effects. In this system, photoreceptor precursor cells (PPCs) are sandwiched between a neurosensory retinal explant and retinal pigment epithelium derived from human embryonic stem cells. Explant medium was collected to identify toxic components and PPC survival was assessed by flow cytometry. We also assessed the potential for AAGP™, a cryopreservative molecule, to improve PPC survival. We identified elevated prostaglandin E2 (PGE2) in the explant medium and demonstrated that AAGP™ reduced PGE2 levels by 2.6-fold. A pro-inflammatory stress assay suggested that this may result from AAGP™ inhibition of cyclo-oxygenase-2 (COX-2) expression. We confirmed that PGE2 reduced the viability of cultured PPCs by 44% and found that the survival rate of PPCs pretreated with AAGP™ was 2.8-fold higher than in untreated PPCs. These data suggest that PGE2 release from necrotic tissue may be one factor that reduces the survival of transplanted precursor cells and that the pro-survival molecule AAGP™ may improve long-term transplanted cell viability. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Proteínas Anticongelantes/farmacologia , Células Fotorreceptoras de Vertebrados/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Células-Tronco/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Humanos , Células Fotorreceptoras de Vertebrados/citologia , Epitélio Pigmentado da Retina/citologia , Células-Tronco/citologia
7.
Mol Vis ; 22: 718-33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27390514

RESUMO

PURPOSE: X-linked retinoschisis (XLRS) is juvenile-onset macular degeneration caused by haploinsufficiency of the extracellular cell adhesion protein retinoschisin (RS1). RS1 mutations can lead to either a non-functional protein or the absence of protein secretion, and it has been established that extracellular deficiency of RS1 is the underlying cause of the phenotype. Therefore, we hypothesized that an ex vivo gene therapy strategy could be used to deliver sufficient extracellular RS1 to reverse the phenotype seen in XLRS. Here, we used adipose-derived, syngeneic mesenchymal stem cells (MSCs) that were genetically modified to secrete human RS1 and then delivered these cells by intravitreal injection to the retina of the Rs1h knockout mouse model of XLRS. METHODS: MSCs were electroporated with two transgene expression systems (cytomegalovirus (CMV)-controlled constitutive and doxycycline-induced Tet-On controlled inducible), both driving expression of human RS1 cDNA. The stably transfected cells, using either constitutive mesenchymal stem cell (MSC) or inducible MSC cassettes, were assayed for their RS1 secretion profile. For single injection studies, 100,000 genetically modified MSCs were injected into the vitreous cavity of the Rs1h knockout mouse eye at P21, and data were recorded at 2, 4, and 8 weeks post-injection. The control groups received either unmodified MSCs or vehicle injection. For the multiple injection studies, the mice received intravitreal MSC injections at P21, P60, and P90 with data collection at P120. For the single- and multiple-injection studies, the outcomes were measured with electroretinography, optokinetic tracking responses (OKT), histology, and immunohistochemistry. RESULTS: Two lines of genetically modified MSCs were established and found to secrete RS1 at a rate of 8 ng/million cells/day. Following intravitreal injection, RS1-expressing MSCs were found mainly in the inner retinal layers. Two weeks after a single injection of MSCs, the area of the schisis cavities was reduced by 65% with constitutive MSCs and by 83% with inducible MSCs, demonstrating improved inner nuclear layer architecture. This benefit was maintained up to 8 weeks post-injection and corresponded to a significant improvement in the electroretinogram (ERG) b-/a-wave ratio at 8 weeks (2.6 inducible MSCs; 1.4 untreated eyes, p<0.05). At 4 months after multiple injections, the schisis cavity areas were reduced by 78% for inducible MSCs and constitutive MSCs, more photoreceptor nuclei were present (700/µm constitutive MSC; 750/µm inducible MSC; 383/µm untreated), and the ERG b-wave was significantly improved (threefold higher with constitutive MSCs and twofold higher with inducible MSCs) compared to the untreated control group. CONCLUSIONS: These results establish that extracellular delivery of RS1 rescues the structural and functional deficits in the Rs1h knockout mouse model and that this ex vivo gene therapy approach can inhibit progression of disease. This proof-of-principle work suggests that other inherited retinal degenerations caused by a deficiency of extracellular matrix proteins could be targeted by this strategy.


Assuntos
Proteínas do Olho/genética , Regulação da Expressão Gênica/fisiologia , Terapia Genética , Retinosquise/terapia , Animais , Citomegalovirus/genética , Modelos Animais de Doenças , Eletroporação , Eletrorretinografia , Ensaio de Imunoadsorção Enzimática , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Injeções Intravítreas , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Retina/fisiologia , Retinosquise/genética , Retinosquise/fisiopatologia , Transfecção
8.
Hum Mol Genet ; 25(8): 1501-16, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27008885

RESUMO

The molecular signaling leading to cell death in hereditary neurological diseases such as retinal degeneration is incompletely understood. Previous neuroprotective studies have focused on apoptotic pathways; however, incomplete suppression of cell death with apoptosis inhibitors suggests that other mechanisms are at play. Here, we report that different signaling pathways are activated in rod and cone photoreceptors in the P23H rhodopsin mutant rat, a model representing one of the commonest forms of retinal degeneration. Up-regulation of the RIP1/RIP3/DRP1 axis and markedly improved survival with necrostatin-1 treatment highlighted necroptosis as a major cell-death pathway in degenerating rod photoreceptors. Conversely, up-regulation of NLRP3 and caspase-1, expression of mature IL-1ß and IL-18 and improved cell survival with N-acetylcysteine treatment suggested that inflammasome activation and pyroptosis was the major cause of cone cell death. This was confirmed by generation of the P23H mutation on an Nlrp3-deficient background, which preserved cone viability. Furthermore, Brilliant Blue G treatment inhibited inflammasome activation, indicating that the 'bystander cell death' phenomenon was mediated through the P2RX7 cell-surface receptor. Here, we identify a new pathway in cones for bystander cell death, a phenomenon important in development and disease in many biological systems. In other retinal degeneration models different cell-death pathways are activated, which suggests that the particular pathways that are triggered are to some extent genotype-specific. This also implies that neuroprotective strategies to limit retinal degeneration need to be customized; thus, different combinations of inhibitors will be needed to target the specific pathways in any given disease.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Fotorreceptoras Retinianas Cones/citologia , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/citologia , Rodopsina/genética , Animais , Efeito Espectador/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Ratos , Ratos Transgênicos , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
9.
Methods Mol Biol ; 1307: 357-69, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-24301073

RESUMO

Transplantation of photoreceptor precursor cells (PPCs) differentiated from human embryonic stem cells (hESCs) is a promising approach to treat common blinding diseases such as age-related macular degeneration and retinitis pigmentosa. However, existing PPC generation methods are inefficient. To enhance differentiation protocols for rapid and high-yield production of PPCs, we focused on optimizing the handling of the cells by including feeder-independent growth of hESCs, using size-controlled embryoid bodies (EBs), and addition of triiodothyronine (T3) and taurine to the differentiation medium, with subsequent removal of undifferentiated cells via negative cell-selection. Our novel protocol produces higher yields of PPCs than previously reported while reducing the time required for differentiation, which will help understand retinal diseases and facilitate large-scale preclinical trials.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias Humanas/citologia , Células Fotorreceptoras/citologia , Diferenciação Celular/efeitos dos fármacos , Colágeno/farmacologia , Combinação de Medicamentos , Citometria de Fluxo , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Humanos , Laminina/farmacologia , Fenômenos Magnéticos , Células Fotorreceptoras/efeitos dos fármacos , Proteoglicanas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real
10.
Tissue Eng Part A ; 21(11-12): 1763-71, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25693608

RESUMO

Retinal disease is the major cause of irreversible blindness in developed countries. Transplantation of photoreceptor precursor cells (PPCs) derived from human embryonic stem cells (hESCs) is a promising and widely applicable approach for the treatment of these blinding conditions. Previously, it has been shown that after transplantation into the degenerating retina, the percentage of PPCs that undergo functional integration is low. The factors that inhibit PPC engraftment remain largely unknown, in part, because so many adverse factors could be at play during in vivo experiments. To advance our knowledge in overcoming potential adverse effects and optimize PPC transplantation, we have developed a novel ex vivo system. Harvested neural retina was placed directly on top of cultured retinal pigment epithelial (RPE) cells from a number of different sources. To mimic PPC transplantation into the subretinal space, hESC-derived PPCs were inserted between the retinal explant and underlying RPE. Explants cocultured with hESC-derived RPE maintained normal gross morphology and viability for up to 2 weeks, whereas the explants cultured on ARPE19 and RPE-J failed by 7 days. Furthermore, the proportion of PPCs expressing ribbon synapse-specific proteins BASSOON and RIBEYE was significantly higher when cocultured with hESC-derived RPE (20% and 10%, respectively), than when cocultured with ARPE19 (only 6% and 2%, respectively). In the presence of the synaptogenic factor thrombospondin-1 (TSP-1), the proportion of BASSOON-positive and RIBEYE-positive PPCs cocultured with hESC-derived RPE increased to ∼30% and 15%, respectively. These data demonstrate the utility of an ex vivo model system to define factors, such as TSP-1, which could influence integration efficiency in future in vivo experiments in models of retinal degeneration.


Assuntos
Células-Tronco Embrionárias Humanas/citologia , Células Fotorreceptoras de Vertebrados/citologia , Retina/citologia , Trombospondina 1/metabolismo , Oxirredutases do Álcool/biossíntese , Oxirredutases do Álcool/genética , Animais , Diferenciação Celular , Linhagem Celular , Transplante de Células , Proteínas Correpressoras , Técnicas de Cocultura , Células Epiteliais/citologia , Humanos , Camundongos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Técnicas de Cultura de Órgãos , Ratos , Epitélio Pigmentado da Retina/citologia
11.
Proc Natl Acad Sci U S A ; 111(9): 3620-5, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24550511

RESUMO

Amyotrophic lateral sclerosis (ALS) is predominantly sporadic, but associated with heritable genetic mutations in 5-10% of cases, including those in Cu/Zn superoxide dismutase (SOD1). We previously showed that misfolding of SOD1 can be transmitted to endogenous human wild-type SOD1 (HuWtSOD1) in an intracellular compartment. Using NSC-34 motor neuron-like cells, we now demonstrate that misfolded mutant and HuWtSOD1 can traverse between cells via two nonexclusive mechanisms: protein aggregates released from dying cells and taken up by macropinocytosis, and exosomes secreted from living cells. Furthermore, once HuWtSOD1 propagation has been established, misfolding of HuWtSOD1 can be efficiently and repeatedly propagated between HEK293 cell cultures via conditioned media over multiple passages, and to cultured mouse primary spinal cord cells transgenically expressing HuWtSOD1, but not to cells derived from nontransgenic littermates. Conditioned media transmission of HuWtSOD1 misfolding in HEK293 cells is blocked by HuWtSOD1 siRNA knockdown, consistent with human SOD1 being a substrate for conversion, and attenuated by ultracentrifugation or incubation with SOD1 misfolding-specific antibodies, indicating a relatively massive transmission particle which possesses antibody-accessible SOD1. Finally, misfolded and protease-sensitive HuWtSOD1 comprises up to 4% of total SOD1 in spinal cords of patients with sporadic ALS (SALS). Propagation of HuWtSOD1 misfolding, and its subsequent cell-to-cell transmission, is thus a candidate process for the molecular pathogenesis of SALS, which may provide novel treatment and biomarker targets for this devastating disease.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Exossomos/metabolismo , Dobramento de Proteína , Superóxido Dismutase/química , Esclerose Lateral Amiotrófica/metabolismo , Animais , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Humanos , Camundongos , Microscopia Eletrônica , Pinocitose/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , Superóxido Dismutase/metabolismo
12.
Tissue Eng Part C Methods ; 19(10): 755-64, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23363370

RESUMO

We proposed to optimize the retinal differentiation protocols for human embryonic stem cells (hESCs) by improving cell handling. To improve efficiency, we first focused on the production of just one retinal precursor cell type (photoreceptor precursor cells [PPCs]) rather than the production of a range of retinal cells. Combining information from a number of previous studies, in particular the use of a feeder-free culture medium and taurine plus triiodothyronine supplements, we then assessed the values of using size-controlled embryoid bodies (EBs) and negative cell selection (to remove residual embryonic antigen-4-positive hESCs). Using size-controlled 1000 cell EBs, significant improvements were made, in that 78% CRX+ve PPCs could be produced in just 17 days. This could be increased to 93% PPCs through the added step of negative cell selection. Improved efficiency of PPC production will help in efforts to undertake shorter and larger preclinical studies as a prelude to future clinical trials.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular , Tamanho Celular , Corpos Embrioides/citologia , Separação Imunomagnética , Células Fotorreceptoras de Vertebrados/citologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Bandeamento Cromossômico , Meios de Cultura/farmacologia , Corpos Embrioides/efeitos dos fármacos , Corpos Embrioides/metabolismo , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Cariotipagem , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Transativadores/genética , Transativadores/metabolismo
13.
IEEE Trans Magn ; 49(1): 389-393, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24976643

RESUMO

Mesenchymal stem cells (MSCs) have well-established paracrine effects that are proving to be therapeutically useful. This potential is based on the ability of MSCs to secrete a range of neuroprotective and anti-inflammatory molecules. Previous work in our laboratory has demonstrated that intravenous injection of MSCs, treated with superparamagnetic iron oxide nanoparticle fluidMAG-D resulted in enhanced levels of glial-derived neurotrophic factor, ciliary neurotrophic factor, hepatocyte growth factor and interleukin-10 in the dystrophic rat retina. In this present study we investigated whether the concentration of fluidMAG-D in cell culture media affects the secretion of these four molecules in vitro. In addition, we assessed the effect of fluidMAG-D concentration on retinoschisin secretion from genetically modified MSCs. ELISA-assayed secretion of these molecules was measured using escalating concentrations of fluidMAG-D which resulted in MSC iron loads of 0, 7, 120, or 274 pg iron oxide per cell respectively. Our results demonstrated glial-derived neurotrophic factor and hepatocyte growth factor secretion was significantly decreased but only at the 96 hour's time-point whereas no statistically significant effect was seen with ciliary neurotrophic factor secretion. Whereas no effect was observed on culture media concentrations of retinoschisin with increasing iron oxide load, a statistically significant increase in cell lysate retinoschisin concentration (p = 0.01) was observed suggesting that increasing fluidMAG-D concentration did increase retinoschisin production but this did not lead to greater secretion. We hypothesize that higher concentrations of iron-oxide nanoparticle fluidMAG-D have an effect on the innate ability of MSCs to secrete therapeutically useful molecules and also on secretion from genetically modified cells. Further work is required to verify these in vitro finding using in vivo model systems.

14.
Cell Transplant ; 21(6): 1137-48, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22405427

RESUMO

Developing new ways of delivering cells to diseased tissue will be a key factor in translating cell therapeutics research into clinical use. Magnetically targeting cells enables delivery of significant numbers of cells to key areas of specific organs. To demonstrate feasibility in neurological tissue, we targeted cells magnetically to the upper hemisphere of the rodent retina. Rat mesenchymal stem cells (MSCs) were magnetized using superparamagnetic iron oxide nanoparticles (SPIONs). In vitro studies suggested that magnetization with fluidMAG-D was well tolerated, that cells remained viable, and they retained their differentiation capabilities. FluidMAG-D-labeled MSCs were injected intravitreally or via the tail vein of the S334ter-4 transgenic rat model of retinal degeneration with or without placing a gold-plated neodymium disc magnet within the orbit, but outside the eye. Retinal flatmount and cryosection imaging demonstrated that after intravitreal injection cells localized to the inner retina in a tightly confined area corresponding to the position of the orbital magnet. After intravenous injection, similar retinal localization was achieved and remarkably was associated with a tenfold increase in magnetic MSC delivery to the retina. Cryosections demonstrated that cells had migrated into both the inner and outer retina. Magnetic MSC treatment with orbital magnet also resulted in significantly higher retinal concentrations of anti-inflammatory molecules interleukin-10 and hepatocyte growth factor. This suggested that intravenous MSC therapy also resulted in significant therapeutic benefit in the dystrophic retina. With minimal risk of collateral damage, these results suggest that magnetic cell delivery is the best approach for controlled delivery of cells to the outer retina-the focus for disease in age-related macular degeneration and retinitis pigmentosa.


Assuntos
Compostos Férricos/química , Nanopartículas de Magnetita/química , Células-Tronco Mesenquimais/citologia , Degeneração Retiniana/terapia , Animais , Sobrevivência Celular/efeitos dos fármacos , Fator de Crescimento de Hepatócito/metabolismo , Interleucina-10/metabolismo , Nanopartículas de Magnetita/toxicidade , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/química , Microscopia Confocal , Ratos , Ratos Transgênicos , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia
15.
Proc Natl Acad Sci U S A ; 108(39): 16398-403, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21930926

RESUMO

Human wild-type superoxide dismutase-1 (wtSOD1) is known to coaggregate with mutant SOD1 in familial amyotrophic lateral sclerosis (FALS), in double transgenic models of FALS, and in cell culture systems, but the structural determinants of this process are unclear. Here we molecularly dissect the effects of intracellular and cell-free obligately misfolded SOD1 mutant proteins on natively structured wild-type SOD1. Expression of the enzymatically inactive, natural familial ALS SOD1 mutations G127X and G85R in human mesenchymal and neural cell lines induces misfolding of wild-type natively structured SOD1, as indicated by: acquisition of immunoreactivity with SOD1 misfolding-specific monoclonal antibodies; markedly enhanced protease sensitivity suggestive of structural loosening; and nonnative disulfide-linked oligomer and multimer formation. Expression of G127X and G85R in mouse cell lines did not induce misfolding of murine wtSOD1, and a species restriction element for human wtSOD1 conversion was mapped to a region of sequence divergence in loop II and ß-strand 3 of the SOD1 ß-barrel (residues 24-36), then further refined surprisingly to a single tryptophan residue at codon 32 (W32) in human SOD1. Time course experiments enabled by W32 restriction revealed that G127X and misfolded wtSOD1 can induce misfolding of cell-endogenous wtSOD1. Finally, aggregated recombinant G127X is capable of inducing misfolding and protease sensitivity of recombinant human wtSOD1 in a cell-free system containing reducing and chelating agents; cell-free wtSOD1 conversion was also restricted by W32. These observations demonstrate that misfolded SOD1 can induce misfolding of natively structured wtSOD1 in a physiological intracellular milieu, consistent with a direct protein-protein interaction.


Assuntos
Dobramento de Proteína , Superóxido Dismutase/metabolismo , Linhagem Celular , Humanos , Mutação , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase-1
16.
FASEB J ; 23(8): 2605-15, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19299482

RESUMO

Palmitoylation, a post-translational modification of cysteine residues with the lipid palmitate, has recently emerged as an important mechanism for regulating protein trafficking and function. With the identification of 23 DHHC mammalian palmitoyl acyl transferases (PATs), a key question was the nature of substrate-enzyme specificity for these PATs. Using the acyl-biotin exchange palmitoylation assay, we compared the substrate specificity of four neuronal PATs, namely DHHC-3, DHHC-8, HIP14L (DHHC-13), and HIP14 (DHHC-17). Exogenous expression of enzymes and substrates in COS cells reveals that HIP14L and HIP14 modulate huntingtin palmitoylation, DHHC-8 modulates paralemmin-1 palmitoylation, and DHHC-3 shows the least substrate specificity. These in vitro data were validated by lentiviral siRNA-mediated knockdown of endogenous HIP14 and DHHC-3 in cultured rat cortical neurons. PATs require the presence of palmitoylated cysteines in order to interact with their substrates. To understand the elements that influence enzyme/substrate specificity further, we fused the HIP14 ankryin repeat domain to the N terminus of DHHC-3, which is not a PAT for huntingtin. This modification enabled DHHC-3 to behave similarly to HIP14 by modulating palmitoylation and trafficking of huntingtin. Taken together, this study indicates that individual PATs have specific substrate preference, determined by regulatory domains outside the DHHC domain of the enzymes.


Assuntos
Aciltransferases/metabolismo , Lipoilação/fisiologia , Neurônios/enzimologia , Aciltransferases/antagonistas & inibidores , Aciltransferases/química , Aciltransferases/genética , Animais , Sequência de Bases , Células COS , Células Cultivadas , Chlorocebus aethiops , Complexo de Golgi/enzimologia , Proteína Huntingtina , Técnicas In Vitro , Proteínas de Membrana/metabolismo , Modelos Moleculares , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , RNA Interferente Pequeno/genética , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
17.
Nat Neurosci ; 9(6): 824-31, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16699508

RESUMO

Post-translational modification by the lipid palmitate is crucial for the correct targeting and function of many proteins. Here we show that huntingtin (htt) is normally palmitoylated at cysteine 214, which is essential for its trafficking and function. The palmitoylation and distribution of htt are regulated by the palmitoyl transferase huntingtin interacting protein 14 (HIP14). Expansion of the polyglutamine tract of htt, which causes Huntington disease, results in reduced interaction between mutant htt and HIP14 and consequently in a marked reduction in palmitoylation. Mutation of the palmitoylation site of htt, making it palmitoylation resistant, accelerates inclusion formation and increases neuronal toxicity. Downregulation of HIP14 in mouse neurons expressing wild-type and mutant htt increases inclusion formation, whereas overexpression of HIP14 substantially reduces inclusions. These results suggest that the expansion of the polyglutamine tract in htt results in decreased palmitoylation, which contributes to the formation of inclusion bodies and enhanced neuronal toxicity.


Assuntos
Proteínas de Transporte/metabolismo , Córtex Cerebral/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Ácido Palmítico/metabolismo , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos/fisiologia , Animais , Animais Recém-Nascidos , Células COS , Proteínas de Transporte/genética , Células Cultivadas , Córtex Cerebral/citologia , Chlorocebus aethiops , Cisteína/metabolismo , Regulação para Baixo/genética , Humanos , Proteína Huntingtina , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo , Camundongos , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Proteínas Nucleares/química , Proteínas Nucleares/genética , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Transporte Proteico/fisiologia , Ratos , Expansão das Repetições de Trinucleotídeos/genética
18.
Neuron ; 44(6): 977-86, 2004 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-15603740

RESUMO

In neurons, posttranslational modification by palmitate regulates the trafficking and function of signaling molecules, neurotransmitter receptors, and associated synaptic scaffolding proteins. However, the enzymatic machinery involved in protein palmitoylation has remained elusive. Here, using biochemical assays, we show that huntingtin (htt) interacting protein, HIP14, is a neuronal palmitoyl transferase (PAT). HIP14 shows remarkable substrate specificity for neuronal proteins, including SNAP-25, PSD-95, GAD65, synaptotagmin I, and htt. Conversely, HIP14 is catalytically invariant toward paralemmin and synaptotagmin VII. Exogenous HIP14 enhances palmitoylation-dependent vesicular trafficking of several acylated proteins in both heterologous cells and neurons. Moreover, interference with endogenous expression of HIP14 reduces clustering of PSD-95 and GAD65 in neurons. These findings define HIP14 as a mammalian palmitoyl transferase involved in the palmitoylation and trafficking of multiple neuronal proteins.


Assuntos
Carnitina O-Palmitoiltransferase/fisiologia , Proteínas de Transporte/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Ácido Palmítico/metabolismo , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Células COS , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Chlorocebus aethiops , Humanos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Transporte Proteico/fisiologia , Especificidade por Substrato
19.
Hum Mol Genet ; 11(23): 2815-28, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-12393793

RESUMO

Huntington disease (HD) is caused by polyglutamine [poly(Q)] expansion in the protein huntingtin (htt). Although the exact mechanism of disease progression remains to be elucidated, altered interactions of mutant htt with its protein partners could contribute to the disease. Using the yeast two-hybrid system, we have isolated a novel htt interacting protein, HIP14. HIP14's interaction with htt is inversely correlated to the poly(Q) length in htt. mRNAs of 9 and 6 bp are transcribed from the HIP14 gene, with the 6 kb transcript being predominantly expressed in the brain. HIP14 protein is enriched in the brain, shows partial co-localization with htt in the striatum, and is found in medium spiny projection neurons, the subset of neurons affected in HD. HIP14 localizes to the Golgi, and to vesicles in the cytoplasm. The HIP14 protein has sequence similarity to Akr1p, a protein essential for endocytosis in Saccharomyces cerevisiae. Expression of human HIP14 results in rescue of the temperature-sensitive lethality in akr1 Delta yeast cells and, furthermore, restores their defect in endocytosis, demonstrating a role for HIP14 in intracellular trafficking. Our findings suggest that decreased interaction between htt and HIP14 could contribute to the neuronal dysfunction in HD by perturbing normal intracellular transport pathways in neurons.


Assuntos
Aciltransferases/metabolismo , Proteínas de Transporte/metabolismo , Endocitose/fisiologia , Doença de Huntington/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Aciltransferases/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Anquirinas/química , Anquirinas/metabolismo , Northern Blotting , Encéfalo/metabolismo , Proteínas de Transporte/genética , Células Cultivadas , Mapeamento Cromossômico , Cromossomos Humanos Par 12/genética , Clonagem Molecular , Feminino , Humanos , Proteína Huntingtina , Técnicas Imunoenzimáticas , Camundongos , Mutação , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas Nucleares/genética , Peptídeos/genética , Peptídeos/metabolismo , Transporte Proteico , Coelhos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Expansão das Repetições de Trinucleotídeos , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...